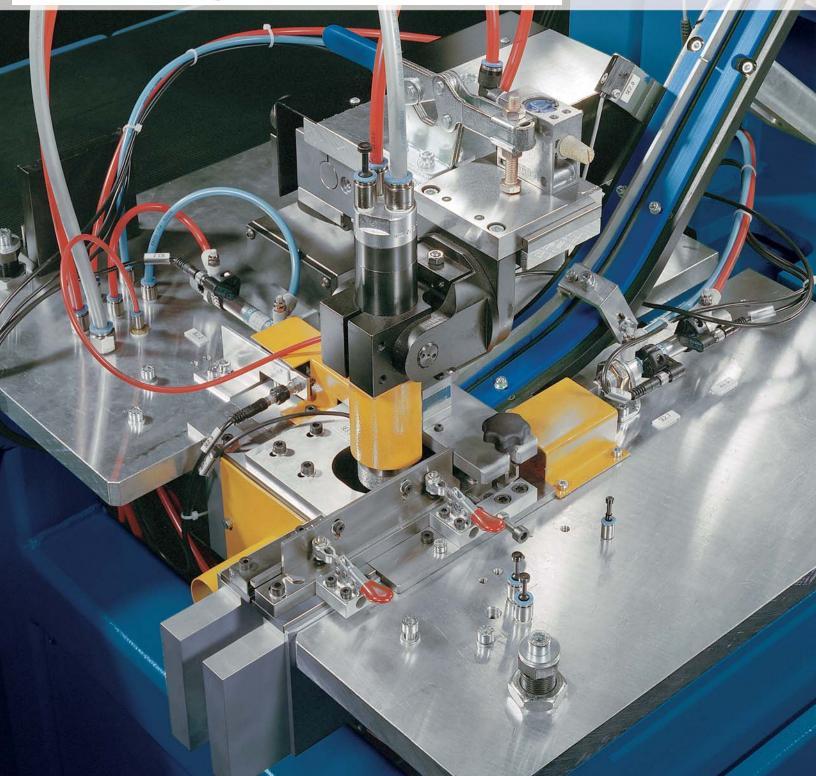
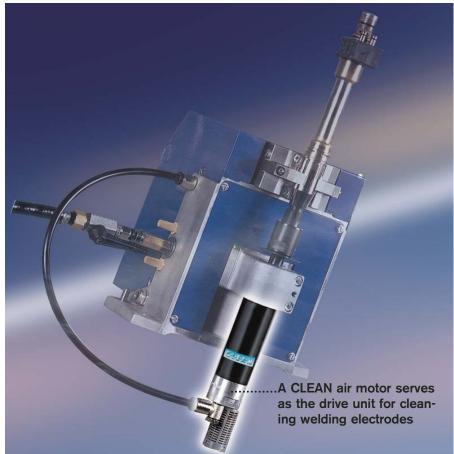
Production Air **Motors**



Ontario's Largest Pneumatic & Hydraulic Tool Distributor

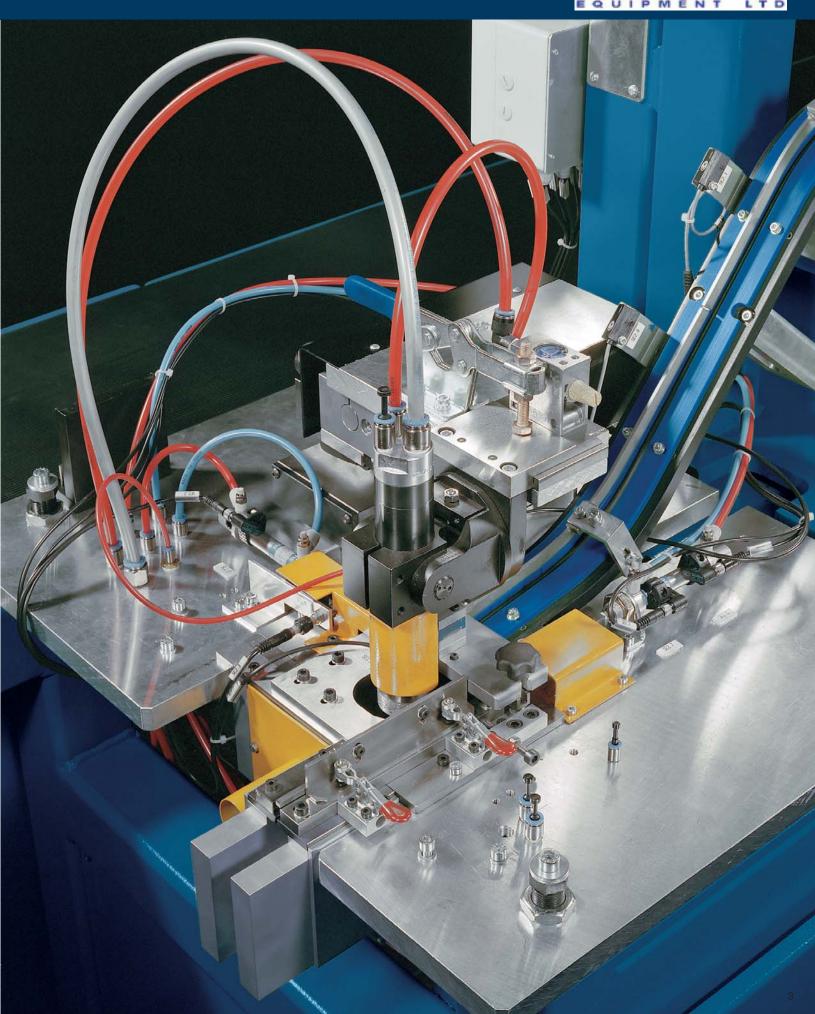
Rugged Air Motors for Continuous Industrial Applications

Bosch production air motors are safe, versatile and extremely durable. They are ideal for the tough demands of industrial and manufacturing applications where reliability and long-term durability are critical. Bosch air motor technology offers a wide range of advantages: Air motors don't create sparks and are ideal in hazardous environments (such as explosive gases or grain dust), and are great in damp or wet environments. Production air motors don't burn out like electric motors, either. Bosch air motors are great as drives for a wide range of


applications, including paint stirring, ice cream production, baked goods/grain mixing, hose retraction systems, tensioning belt controls on packaging machines, pumping fuel, lifting/lowering material containers with chain drives, and various assembly line servomotor functions.

C Consumption optimized L Lubrication free E Ergonomic A Air tool N Noise reduction

Bosch C·L·E·A·N Technology: What is it, and what are the advantages?


C·L·E·A·N is actually an acronym that denotes several technical features of part of our range of air tools and air motors. C·L·E·A·N technology protects the workpiece, the tool user and the environment by eliminating the need for auto-

matic oilers, reducing air consumption and reducing tool noise. C·L·E·A·N motors NEVER need oil, but are not affected by existing oilers in a facility! C·L·E·A·N technology reduces tool air consumption by up to 30%, (reducing facility energy costs) and reduces tool noise by several decibels depending on application. Look for the C·L·E·A·N symbol in this catalog; it will save you money, energy and repair time while reducing worker complaints based on noise and air pollution in the workplace.

Air Motors

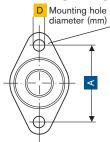
	/	*	/	/	18th
from 100 to 370 W (0.134 to 0.5 Hp)	Tool part nur	bet Stallingt	Idue Ide Ipr	a tation	power power of
	100	Sto M.	1910 (46.	40. G	Por line
	0 607 954 306	2.0/1.5	1850	R/L	100/0.134
	0 607 954 307	0.9/0.7	4100	R/L	100/0.134
BOSCH (B)	0 607 954 304	2.1/1.5	2200	R	120/0.16
	0 607 954 305	1.0/0.7	4900	R	120/0.16
100–120 Watt, 0.13–0.16 Hp Motors					
	0 607 953 335	6.5/4.8	620	R/L	180/0.24
	0 607 953 336	4.5/3.3	1000	R/L	180/0.24
BOSCH 🖨 C-L-E-A-N	0 607 953 337	3.0/2.0	1600	R/L	180/0.24
	0 607 953 338	1.5/1.1	2800 3800	R/L	180/0.24
	0 607 953 340	7.7/5.7	740	R	180/0.24
	0 607 953 332	4.7/3.5	1190	R	180/0.24
180 Watt, 1/4 Hp Motors	0 607 953 333	3.2/2.4	1875	R	180/0.24
	0 607 953 334	1.6/1.2	3300	R	180/0.24
	0 607 953 339	1.1/0.8	4500	R	180/0.24
BOSCH & CLEAN (C)	0 607 953 346	4.5/3.3	1000	R/L	180/0.24
	0 607 953 348	1.5/1.1	2800	R/L	180/0.24
					-
	0 607 951 322	22.0/16.2	540	R	300/0.4
	0 607 951 304	25.0/18.4	490	R/L	340/0.46
BOSCH (1)	0 607 951 305	15.0/11.1	780	R/L	340/0.46
	0 607 951 306	9.0/6.6	1400	R/L	340/0.46
300–340 Watt, 0.4–0.46 Hp Motors	0 607 951 307	4.5/3.3	2700	R/L	340/0.46
	0 607 951 314	25.0/18.4	490	R/L	340/0.46
BOSCH	0 607 951 315	15.0/11.1	780	R/L	340/0.46
	0 607 951 316	9.0/6.6	1400	R/L	340/0.46
340 Watt, 0.46 Hp Motors	0 607 951 318	25.0/18.4	490	R/L	340/0.46
	0 607 951 325	25.0/18.4	490	R/L	340/0.46
BOSCH (c)	0 607 951 326	9.0/6.6	1400	R/L	340/0.46
	0 607 951 323	25.0/18.4	490	R/L	340/0.46
	0 007 901 020	20.0710.4	730	IVL	04070.40
BOSCH (C					
40 Well 0 40 He Melene					

340 Watt, 0.46 Hp Motors

Pit Conf	and a light of the	arnotor crni de load crni	koltosi Spirote dine	hions him	at thread Inner th	see think to the set of the set o	helded acces	Accession Accession with the s
5.0	10.6	0.37/0.82	3/8"-24 UNF-2A	G 1/8″	6	Operated by external control valve not supplied by Bosch.	Barbed hose nipple	3 603 386 002
5.0	10.6	0.32/0.71	3/8"-24 UNF-2A	G 1/8″	6	Max. axial load on motor shaft	Silencer G 1/4"	3 607 000 016
4.5	9.5	0.37/0.82	3/8"-24 UNF-2A	G 1/8″	6	$F_{AX} = 250 \text{ N}$ Max. radial load		
4.5	9.5	0.32/0.71	3/8"-24 UNF-2A	G 1/8″	6	on motor shaft $F_{RA} = 10 \text{ N}$		
5.5	11.6	0.68/1.50	3/8"-24 UNF-2A	G 1/8″	6	Operated by external control valve not supplied by Bosch.	Barbed hose nipple	3 603 386 002
5.5	11.6	0.68/1.50	3/8"-24 UNF-2A	G 1/8″	6	Max. axial load on motor shaft	Silencer G 1/4"	3 607 000 016
5.5	11.6	0.60/1.32	3/8"-24 UNF-2A	G 1/8″	6	$F_{AX} = 400 \text{ N}$ Max. radial load		
5.5	11.6	0.68/1.50	3/8"-24 UNF-2A	G 1/8″	6	on motor shaft $F_{RA} = 16 \text{ N}$		
5.5	11.6	0.60/1.32	3/8"-24 UNF-2A	G 1/8″	6			
5.0	10.6	0.68/1.50	3/8"-24 UNF-2A	G 1/8″	6			
5.0	10.6	0.68/1.50	3/8"-24 UNF-2A	G 1/8″	6			
5.0	10.6	0.60/1.32	3/8"-24 UNF-2A	G 1/8″	6			
5.0	10.6	0.60/1.32	3/8"-24 UNF-2A	G 1/8″	6			
5.0	10.6	0.60/1.32	3/8"-24 UNF-2A	G 1/8″	6			
5.5	11.6	0.68/1.50	10-h6 spindle	G 1/8″	6	Motors346 and348 have		
5.5	11.6	0.60/1.32	10-h6 spindle	G 1/8″	6	extended shaft (see photo on left)		
9.0	19.1	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	Operated by external control	Barbed hose nipple	3 603 386 005
10.5	22.2	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	valve not supplied by Bosch. Max. axial load	Silencer G 3/8"	3 607 000 001
10.5	22.2	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	on motor shaft $F_{AX} = 850 \text{ N}$ Max. radial load		
10.5	22.2	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	on motor shaft $F_{RA} = 34 \text{ N}$ Motor 0 607 951 322 features a		
10.5	22.2	0.80/1.76	3/8"-24 UNF-2A	G 1/8″	8	pressurized rotor & vanes (inlet air pressure forces the vanes outward)		
105	00.0	0.07/1.00	0/0// 0	0.1/0//		for improved starts under load Operated by external control	Barbed hose nipple	3 603 386 005
10.5	22.2	0.87/1.92	3/8" Square	G 1/8"	8	valve not supplied by Bosch. Max. axial load on motor shaft	Silencer G 3/8"	3 607 000 001
10.5	22.2	0.87/1.92	3/8" Square	G 1/8" G 1/8"	8	$F_{AX} = 850 \text{ N}$ Max. radial load		
10.5	22.2	0.87/1.92	3/8" Square	G 1/8"	8	on motor shaft $F_{RA} = 34 \text{ N}$		
10.5	22.2	0.90/1.98	10-h6 spindle	G 1/8″	8	Operated by external control valve	Barbed hose nipple	3 603 386 005
				G 1/8"		not supplied by Bosch. Max. axial load on motor shaft	Silencer G 3/8"	3 607 000 001
10.5 10.5	22.2 22.2	0.90/1.98	12-h6 spindle	G 1/8" G 1/8"	8	F _{AX} = 850 N Max. radial load		
10.5	22.2	0.90/1.98	12-h6 spindle	G 1/8	Ö	on motor shaft $F_{RA} = 34 \text{ N}$		
						Motors318, 325, 326 have extended shaft (see photo on left)		
10.5	22.2	0.98/2.16	3/8" Square with	G 1/8″	8	Operated by external control	Barbed hose nipple	3 603 386 005
			sliding spindle			valve not supplied by Bosch. Max. axial load on motor shaft	Silencer G 3/8"	3 607 000 001
			(10 mm stroke)			$F_{AX} = 850 \text{ N}$ Max. radial load		
						on motor shaft $F_{RA} = 34 \text{ N}$		1

	/	¢	/ /	/	Powers
rom 340 to 740 W (0.46 to 1Hp)	Too per nu	iber Stallington	ique https://https//https/	s tion	powerse of
	TOOLA	Stallinum	. He int	Rotain	Powend
	0 607 951 300	25.0/18.4	600	R	370/0.5
	0 607 951 301	15.0/11.1	930	R	370/0.5
BOSCH	0 607 951 302	9.0/6.6	1620	R	370/0.5
	0 607 951 303	4.5/3.3	3300	R	370/0.5
70 Watt, 0.5 Hp Motors	0 607 951 311	25.0/18.4	600	R	370/0.5
	0 607 951 312	15.0/11.1	930	R	370/0.5
	0 607 951 313	9.0/6.6	1620	R	370/0.5
	0 607 952 303	28.0/20.7	650	R/L	500/0.54
	0 607 952 304	15.5/11.4	1150	R/L	500/0.54
	0 607 952 305	6.5/4.8	2700	R/L	500/0.54
	0 607 952 300	28.0/20.7	760	R	550/0.74
	0 607 952 301	15.5/11.4	1350	R	550/0.74
50 Watt, 0.74 Hp Motors	0 607 952 302	6.5/4.8	3000	R	550/0.74
	0 607 957 301	36.0/26.6	610	R/L	620/0.83
	0 607 957 308	90.0/66.4	250	R/L	620/0.83
BOSCH 🔿 🕢	0 607 957 309	65.0/47.9	340	R/L	620/0.83
	0 607 957 310	36.0/26.6	610	R/L	620/0.83
0 Watt, 0.83 Hp Motors	0 607 957 315	36.0/26.6	610	R/L	620/0.83
	0 607 957 317	160/118	120	R/L	620/0.83
	0 607 957 300	36.0/26.6	720	R	740/1.0
40 Watt, 1.0 Hp Motors					
	0 607 957 314	170.0/125.4	140	R	740/1.0
	0 607 957 305	90.0/66.4	290	R	740/1.0
BOSCH @	0 607 957 306	65.0/47.9	400	R	740/1.0
	0 607 957 307	36.0/26.6	720	R	740/1.0

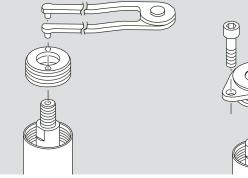
740 Watt, 1.0 Hp Motors

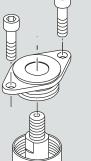

,

pit con	sundia pir con	sunption chrill	walthal Sainde dime	isions pirint	st thread	ose entrol realizes	Included acces	Accessory numbers
9.0	19.1	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	Operated by external control valve not supplied by Bosch.	Barbed hose nipple	3 603 386 005
9.0	19.1	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	Max. axial load on motor shaft	Silencer G 3/8"	3 607 000 001
9.0	19.1	0.90/1.98	3/8"-24 UNF-2A	G 1/8″	8	F _{AX} = 850 N Max. radial load		
9.0	19.1	0.80/1.76	3/8"-24 UNF-2A	G 1/8″	8	on motor shaft $F_{RA} = 34 \text{ N}$		
9.0	19.1	0.87/1.92	3/8" Square	G 1/8″	8			
9.0	19.1	0.87/1.92	3/8" Square	G 1/8″	8			
9.0	19.1	0.87/1.92	3/8" Square	G 1/8″	8			
13.5	28.6	1.40/3.09	1/2"-20 UNF-2A	G 1/4″	10	Operated by external control	Barbed hose nipple	3 603 386 000
13.5	28.6	1.40/3.09	1/2"-20 UNF-2A	G 1/4″	10	valve not supplied by Bosch. Motor exhausts through the	Silencer G 1/2"	3 607 000 000
13.5	28.6	1.20/2.65	1/2"-20 UNF-2A	G 1/4″	10	unused air inlet (if motor rotates right, exhaust comes		
12.0	25.4	1.40/3.09	1/2"-20 UNF-2A	G 1/4″	10	out the left port) Max. axial load on motor shaft		
12.0	25.4	1.40/3.09	1/2"-20 UNF-2A	G 1/4″	10	F _{AX} = 1250 N Max. radial load		
12.0	25.4	1.20/2.65	1/2"-20 UNF-2A	G 1/4″	10	on motor shaft $F_{RA} = 50 \text{ N}$		
17.5	37.0	1.32/2.91	1/2"-20 UNF-2A	G 1/4″	10	Operated by external control valve not supplied by Bosch.	Barbed hose nipple	3 603 386 000
17.5	37.0	2.10/4.63	1/2" Square	G 1/4″	10	Max, axial load on motor shaft	Silencer G 1/2"	3 607 000 000
17.5	37.0	1.70/3.75	1/2" Square	G 1/4″	10	F _{AX} = 1550 N Max. radial load		
17.5	37.0	1.70/3.75	1/2" Square	G 1/4″	10	on motor shaft $F_{RA} = 62 \text{ N}$		
17.5	37.0	1.70/3.75	Cyl. shaft dia. 12 j 6	G 1/4″	10			
17.5	37.0	1.70/3.75	1/2" Square	G 1/4″	10			
16.0	33.9	1.32/2.91	1/2″-20 UNF-2A	G 1/4″	10	Operated by estame lands	Barbad has	2 602 206 000
10.0	33.9	1.52/2.91	1/2 -20 UNF-2A	G 1/4	10	Operated by external control valve not supplied by Bosch.	Barbed hose nipple Silencer G 1/2"	3 603 386 000 3 607 000 000
						Max. axial load on motor shaft $F_{AX} = 1550 \text{ N}$	Sliencer G 1/2	3 607 000 000
						Max. radial load on motor shaft $F_{RA} = 62 \text{ N}$		
16.0	33.9	2.10/4.63	1/2" Square	G 1/4″	10	Operated by external control valve not supplied by Bosch.	Barbed hose nipple	3 603 386 000
16.0	33.9	2.10/4.63	1/2" Square	G 1/4″	10	Max. axial load on motor shaft	Silencer G 1/2"	3 607 000 000
16.0	33.9	1.70/3.75	1/2" Square	G 1/4″	10	F _{AX} = 1550 N Max. radial load		
16.0	33.9	1.70/3.75	1/2" Square	G 1/4″	10	on motor shaft $F_{RA} = 62 \text{ N}$		

Accessories for Air Motors

Mounting flanges




All mounting flanges are 4 mm thick. Bosch 2-hole mounting flanges replace the existing motor drive end housing to ease motor installation in various applications. The flange "ears" have two 4mm holes for mounting.

Installation is easy!

Unscrew the existing motor drive end cover with a commercially available pin spanner and screw in the mounting flange. Note that all motors have lefthand threads. The motor can be secured to the desired product as needed with two screws (not included).

	Pathundet	Description	Thead dat	¢	Siteinmin
				А	D
	3 605 700 043	All 100/120 watt air motors	M 26 x 1 Left	51	7
	3 605 700 044	All 180 watt air motors	M 30 x 1 Left	51	7
	3 605 700 045	All 300/370 watt air motors	M 35 x 1 Left	57	7
I	3 605 700 046	All 500/550, some 620 & 740 watt air motors: 0 607 952 300, 301,302, 303, 304, 305, and 0 607 957 300, 301	M 45 x 1 Left	70	9
	3 605 700 047	Most 620/740 watt air motors: 0 607 957 305, 306, 307, 308, 309, 310, 314, 315	M 50 x 1 Left	70	9

Sliding spindle (1/4" hex shank to 1/4" female quick-change chuck) w/20 mm stroke	3 607 030 018	1/4" hex.				
Keyless chuck drive adapter (3/8" - 24 female thread to 1/4" female quick-change chuck)	3 608 577 000	3/8"-24 UNF-2A 1/4" QC*				
		* Quick-change chuck				
Collet chuck drive adapter	3 608 570 003	3/8"-24 UNF-2A 3/8 " thread. Must be used with separately ordered collet (e.g. diameter 6 mm 2 608 570 079) and collet nut 3 603 342 001.				
Drill chucks						
	1 608 571 020	Keyed 3/8" drill chuck for motors with spindle thread 3/8"-24 UNF-2A				
	2 608 572 067	Keyless 3/8" drill chuck for motors with spindle thread 3/8"-24 UNF-2A				
	1 608 571 030	Keyed 3/8" drill chuck for motors with spindle thread 1/2"-20 UNF-2A				
	1 608 572 024	Keyless 3/8" drill chuck for motors with spindle thread 1/2"-20 UNF-2A				

Data for all 100/120 watt, 0.13/0.16 hp air motors with 6 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:

Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "a" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi

3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

Motor 0 607 954 304 120 W series, R Only, Max stalling torque on a soft joint (720° tightening angle) at:

2,4

1.8

1.2

0.6

0.15

6.3 bar/91 psi = 2.1 Nm 5.3 bar/77 psi = 1.9 Nm 4.3 bar/62 psi = 1.5 Nm3.3 bar/48 psi = 1.1 Nm Motor 0 607 954 306 100 W series, R/L, Max stalling torque on a soft joint (720° tightening angle) at:

Ø

0

P

1120 800

6.3 bar/91 psi = 2.0 Nm 5.3 bar/77 psi = 1.8 Nm 4.3 bar/62 psi = 1.4 Nm 3.3 bar/48 psi = 1.0 Nm

0 6

5

4

3

2

Q

120

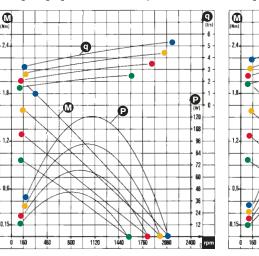
-108

96

84

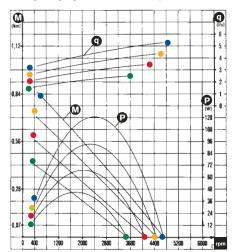
72

60


48

36

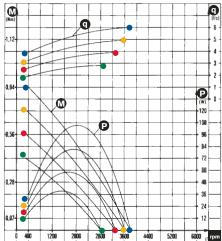
24


12

2400 (1

Motor 0 607 954 305 120 W series, R Only, Max stalling torque on a soft joint (720° tightening angle) at:

6.3 bar/91 psi = 1.0 Nm 5.3 bar/77 psi = 0.9 Nm 4.3 bar/62 psi = 0.7 Nm 3.3 bar/48 psi = 9.5 Nm



Motor 0 607 954 307 100 W series, R/L, Max stalling torque on a soft joint (720° tightening angle) at:

480

6.3 bar/91 psi = 0.9 Nm 5.3 bar/77 psi = 0.8 Nm 4.3 bar/62 psi = 0.6 Nm 3.3 bar/48 psi = 0.5 Nm

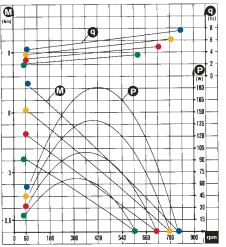
2080

Air Motor Power/Torque/Air Consumption Charts

Data for all 180 watt, 0.24 hp air motors with 6 mm I.D. air inlet:

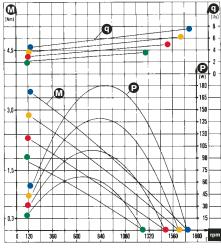
Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:


Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "a" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi

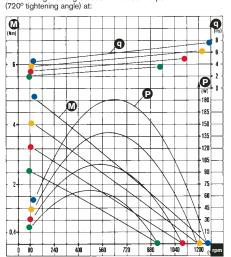
Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.


Motor 0 607 953 308 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 8.0 Nm 5.3 bar/77 psi = 6.5 Nm 4.3 bar/62 psi = 5.3 Nm 3.3 bar/48 psi = 4.8 Nm

Motor 0 607 953 310, 326 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

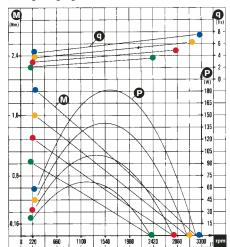


Motor 0 607 953 312 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

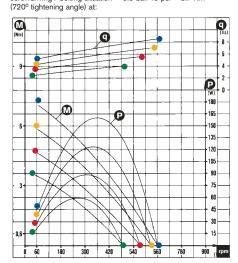
6.3 bar/91 psi = 1.1 Nm 5.3 bar/77 psi = 0.9 Nm 4.3 bar/62 psi = 0.7 Nm 3.3 bar/48 psi = 0.5 Nm

6.3 bar/91 psi = 5.3 Nm 180 W series, R Only, Max 5.3 bar/77 psi = 4.3 Nm 4.3 bar/62 psi = 3.5 Nm screwdriving / bolting situation 3.3 bar/48 psi = 2.5 Nm

Motor 0 607 953 311 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:


Motor 0 607 953 313

180 W series, L/R, Max stalling torque in a 'soft'


Motor 0 607 953 309

stalling torque in a 'soft'

6.3 bar/91 psi = 2.1 Nm 5.3 bar/77 psi = 1.7 Nm 4.3 bar/62 psi = 1.4 Nm 3.3 bar/48 psi = 1.0 Nm

6.3 bar/91 psi = 7.5 Nm 5.3 bar/77 psi = 6.2 Nm 4.3 bar/62 psi = 5.0 Nm screwdriving / bolting situation 3.3 bar/48 psi = 3.7 Nm

Data for all 180 watt, 0.24 hp air motors with 6 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:

Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "q" Air volumes and motor performance are shown at: 6.3 bar/91 psi

5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

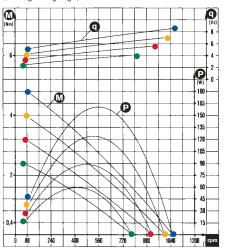
Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

Motor 0 607 953 314

180 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

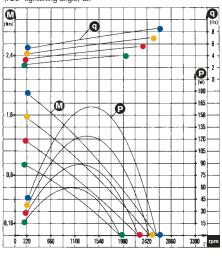
6.3 bar/91 psi = 5.1 Nm 5.3 bar/77 psi = 4.2 Nm 4.3 bar/62 psi = 3.4 Nm 3.3 bar/48 psi = 2.5 Nm Motor 0 607 953 315

Max stalling torque in a 'soft'


(720° tightening angle) at:

screwdriving / bolting situation

g

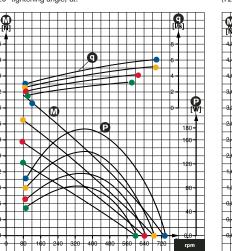

180 W series, R/L,

(Nm)

Motor 0 607 953 316 180 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 2.0 Nm 5.3 bar/77 psi = 1.6 Nm 4.3 bar/62 psi = 1.3 Nm 3.3 bar/48 psi = 1.0 Nm

Motor 0 607 953 331 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

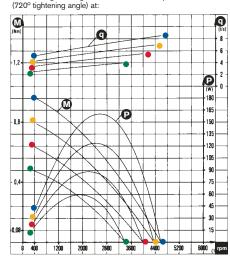

9

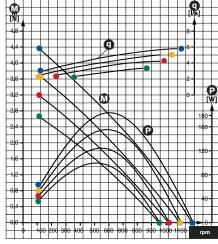
6.3 bar/91 psi = 7.7 Nm 5.3 bar/77 psi = 6.4 Nm 4.3 bar/62 psi = 5.2 Nm 3.3 bar/48 psi = 4.1 Nm

Motor 0 607 953 332 180 W series, R Only, Max stalling torque in a 'soft' (720° tightening angle) at:

screwdriving / bolting situation

6.3 bar/91 psi = 4.7 Nm 5.3 bar/77 psi = 4.0 Nm 4.3 bar/62 psi = 3.5 Nm 3.3 bar/48 psi = 2.9 Nm


6 4 4.5 2 D 180 165 Ø P 150 3.0 135 120 105 90 • 75 1.5 60 45 30 • 0,3-15 Ó 120 360 600 840 1320 1560 1800 ₍₁ rpm 6.3 bar/91 psi = 1.0 Nm 5.3 bar/77 psi = 0.8 Nm Motor 0 607 953 317 180 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation 4.3 bar/62 psi = 0.7 Nm 3.3 bar/48 psi = 0.5 Nm


6.3 bar/91 psi = 3.5 Nm

5.3 bar/77 psi = 2.9 Nm

4.3 bar/62 psi = 2.3 Nm 3.3 bar/48 psi = 1.7 Nm

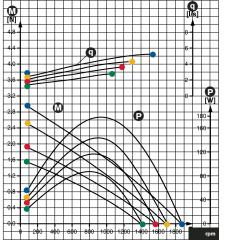
8

11

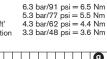
Air Motor Power/Torque/Air Consumption Charts

Data for all 180 watt, 0.24 hp air motors with 6 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

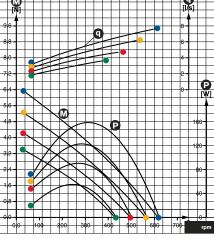

Chart legend:

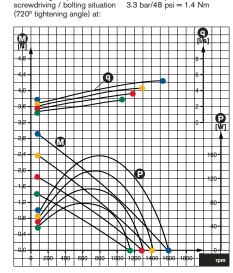
Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "q" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi


Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

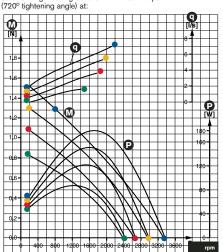
Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load. Motor 0 607 953 333 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation

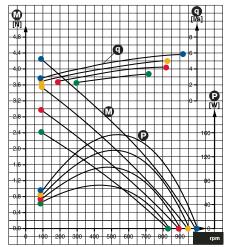
screwdriving / bolting situation 3.3 bar/48 psi = 1.6 Nm(720° tightening angle) at:


Motor 0 607 953 335 180 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:


6.3 bar/91 psi = 3.2 Nm

5.3 bar/77 psi = 2.6 Nm


4.3 bar/62 psi = 2.0 Nm


Motor 0 607 953 337 180 W series, R/L, Max stalling torque in a 'soft' 6.3 bar/91 psi = 2.9 Nm 5.3 bar/77 psi = 2.3 Nm 4.3 bar/62 psi = 1.8 Nm 3.3 bar/48 psi = 1.4 Nm

Motor 0 607 953 334 180 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (7000 tichtoring action at the 6.3 bar/91 psi = 1.6 Nm 5.3 bar/77 psi = 1.3 Nm 4.3 bar/62 psi = 1.1 Nm 3.3 bar/48 psi = 0.9 Nm

Motor 0 607 953 336, 346 180 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 4.5 Nm 5.3 bar/77 psi = 3.9 Nm 4.3 bar/62 psi = 3.2 Nm 3.3 bar/48 psi = 2.6 Nm

 Motor 0 607 953 338, 348
 6.3 bar/91 psi =

 180 W series, R/L, Max stalling torque in a 'soft'
 5.3 bar/77 psi =

 180 W series, R/L,
 5.3 bar/77

 Max stalling torque in a 'soft'
 4.3 bar/62

 screwdriving / botting situation
 3.3 bar/48

 (720° tightening angle) at:
 3.4 bar/62

6.3 bar/91 psi = 1.4 Nm 5.3 bar/77 psi = 1.2 Nm 4.3 bar/62 psi = 1.0 Nm 3.3 bar/48 psi = 0.8 Nm

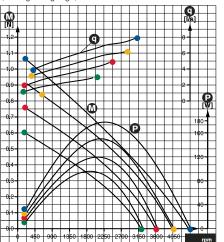
Data for all 180 watt, 0.24 hp air motors with 6 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:

Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "q" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

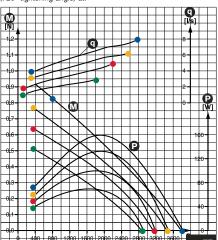

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

Data for all 370 watt, 0.5 hp air motors with 8 mm I.D. air inlet:

See chart legend above.

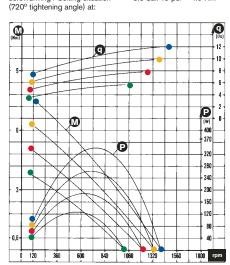
Motor 0 607 953 339 180 W series, R Only,

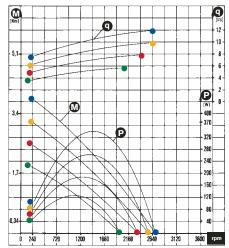
Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 1.1 Nm 5.3 bar/77 psi = 0.9 Nm 4.3 bar/62 psi = 0.7 Nm 3.3 bar/48 psi = 0.5 Nm



 Motor 0 607 953 340
 6.3 bar/91 psi = 1.0 Nm

 180 W series, R/L,
 5.3 bar/77 psi = 0.9 Nm


 xscrewdriving / bolting situation
 4.3 bar/62 psi = 0.7 Nm


 (720° tightening angle) at:
 3.3 bar/48 psi = 0.5 Nm

Motor 0 607 951 306, 316, 326 370 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation

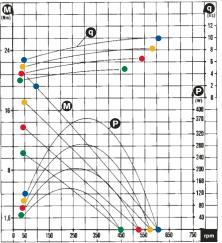
6.3 bar/91 psi = 9.0 Nm 5.3 bar/77 psi = 7.5 Nm 4.3 bar/62 psi = 6.0 Nm 3.3 bar/48 psi = 4.5 Nm Motor 0 607 951 307 370 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 4.5 Nm 5.3 bar/77 psi = 3.5 Nm 4.3 bar/62 psi = 3.0 Nm 3.3 bar/48 psi = 2.0 Nm

Air Motor Power/Torque/Air Consumption Charts

Data for all 370 watt, 0.5 hp air motors with 10 mm I.D. air inlet:

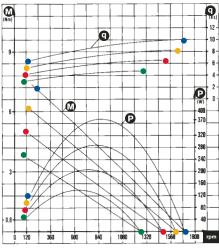
Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:


Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "a" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.


Motor 0 607 951 300, 311, 322 370 W series, R Only, Max stalling torque in a 'soft' screw driving / bolting situation (720) tightening angle) at:

6.3 bar/91 psi = 25.6 Nm 5.3 bar/77 psi = 20.5 Nm 4.3 bar/62 psi = 16.5 Nm 3.3 bar/48 psi = 12.5 Nm

Motor 0 607 951 302, 313 370 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 9.0 Nm 5.3 bar/77 psi = 7.5 Nm 4.3 bar/62 psi = 6.0 Nm 3.3 bar/48 psi = 4.5 Nm

Motor 0 607 951 304, 314, 318, 323, 325 370 W series R/L, Max stalling torque in a 'soft' screwdriving / bolting situation

Ø

Ø

24

16

1.6 ò 50 150 250 350 45 550 650

Motor 0 607 951 305, 315 370 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

4-

2.

P W 0.

400

370

320

280

240 200

160

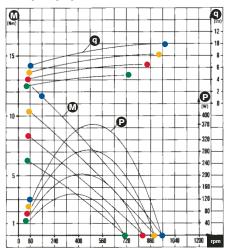
120

80

40

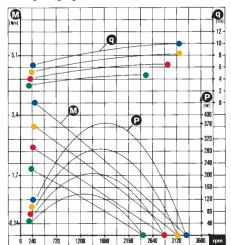
750 rpm

6.3 bar/91 psi = 15.0 Nm 5.3 bar/77 psi = 12.5 Nm 4.3 bar/62 psi = 10.0 Nm 3.3 bar/48 psi = 7.5 Nm


6.3 bar/91 psi = 25.0 Nm 5.3 bar/77 psi = 20.5 Nm 4.3 bar/62 psi = 16.5 Nm 3.3 bar/48 psi = 12.5 Nm (720° tightening angle) at: q Ø 12 10-8-6 -

Ð

370 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: Ø


Motor 0 607 951 301, 312

6.3 bar/91 psi = 15.0 Nm 5.3 bar/77 psi = 12.5 Nm 4.3 bar/62 psi = 10.0 Nm 3.3 bar/48 psi = 7.5 Nm

Motor 0 607 951 303 370 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 4.5 Nm 5.3 bar/77 psi = 3.5 Nm 4.3 bar/62 psi = 3.0 Nm 3.3 bar/48 psi = 2.0 Nm

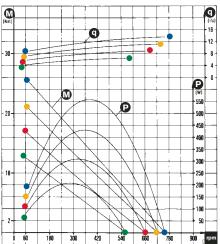
Data for all 550 watt, 0.74 hp air motors with 6 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

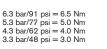
Chart legend:

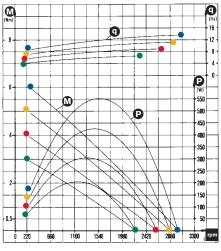
Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "q" Air volumes and motor performance are shown at: 6.3 bar/91 psi

5.3 bar/77 psi 4.3 bar/62 psi

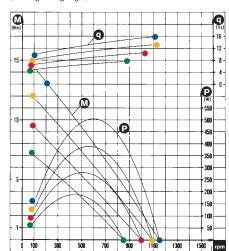

3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

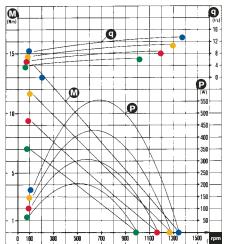

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

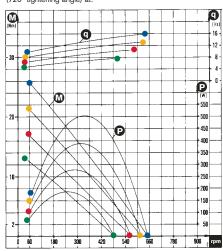

Motor 0 607 952 300, 550 W series, R Only, Max stalling torque in a 'soft'

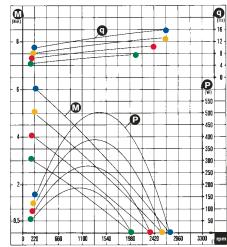
Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 28.0 Nm 5.3 bar/77 psi = 23.6 Nm 4.3 bar/62 psi = 18.5 Nm 3.3 bar/48 psi = 14.0 Nm



Motor 0 607 952 302, 550 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:




Motor 0 607 952 304, 550 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 15.5 Nm 5.3 bar/77 psi = 13.0 Nm 4.3 bar/62 psi = 10.0 Nm 3.3 bar/48 psi = 7.5 Nm


Motor 0 607 952 301, 550 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 15.5 Nm 5.3 bar/77 psi = 13.0 Nm 4.3 bar/62 psi = 10.0 Nm 3.3 bar/48 psi = 7.5 Nm

Motor 0 607 952 303, 550 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 28.8 Nm 5.3 bar/77 psi = 23.8 Nm 4.3 bar/62 psi = 18.5 Nm 3.3 bar/48 psi = 14.8 Nm

Motor 0 607 952 305, 550 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 6.5 Nm 5.3 bar/77 psi = 5.0 Nm 4.3 bar/62 psi = 4.0 Nm 3.3 bar/48 psi = 3.0 Nm

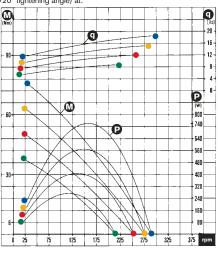
Data for all 740 watt, 1.0 hp air motors with 10 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:

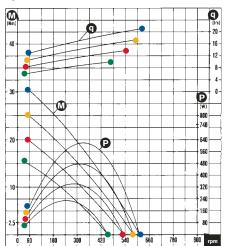
Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "a" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi 4.3 bar/62 psi 3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

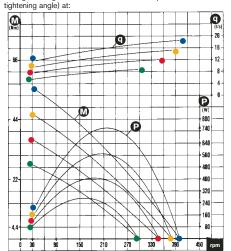

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

Motor 0 607 957 300, 307 740 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 36.0 Nm 5.3 bar/77 psi = 30.0 Nm 4.3 bar/62 psi = 24.0 Nm 3.3 bar/48 psi = 18.0 Nm


Ø q 20 Ø 16 **4**Л 12 -8-. 4. M ٥ - 30 D 800 e 740 - 20 640 560 480 400 320 10-240 160 1 80 2.5 780 900 rpm 300 420 540 660 Ó 60 180

Motor 0 607 957 305 740 W series, R Only, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at: 6.3 bar/91 psi = 90.0 Nm 5.3 bar/77 psi = 74.5 Nm 4.3 bar/62 psi = 60.8 Nm 3.3 bar/48 psi = 45.0 Nm


Motor 0 607 957 301, 310, 315 740 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

6.3 bar/91 psi = 36.0 Nm 5.3 bar/77 psi = 30.0 Nm 4.3 bar/62 psi = 24.0 Nm 3.3 bar/48 psi = 16.0 Nm

6.3 bar/91 psi = 65.0 Nm 5.3 bar/77 psi = 54.8 Nm Motor 0 607 957 306 740 W series, R Only, Max stalling torque in a 'soft' screw-driving / bolting situation (720°

4.3 bar/62 psi = 43.5 Nm 3.3 bar/48 psi = 32.5 Nm

Data for all 740 watt, 1.0 hp air motors with 10 mm I.D. air inlet:

Charts show motor power & torque vs. air pressure in bar/psi & air flow in liters/second.

Chart legend:

Torque curve is identified by "M" Power is identified by "P" Air flow is identified by "q" Air volumes and motor performance are shown at: 6.3 bar/91 psi 5.3 bar/77 psi

4.3 bar/62 psi

3.3 bar/48 psi

Follow the corresponding color code to determine the ratio of airflow/power/ torque/speed (rpm) for each motor.

Example: The blue dots on the flow line (q) correspond to the blue dots on the torque line (M) and the blue dots on the power line (P); these 3 plot lines provide the relational performance data at an inlet air pressure of 6.3 bar/91 psi with the motor running under rated load.

Motor 0 607 957 308

90-

60

38

:

Ċ

.

i 25

75 125 175 225

Motor 0 607 957 314 740 W series, R Only, Max

6-

740 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

Q

Ø

ø

6.3 bar/91 psi = 90.0 Nm 5.3 bar/77 psi = 74.5 Nm 4.3 bar/62 psi = 60.0 Nm

3.3 bar/48 psi = 45.8 Nm q 20 -16 -12 -. 8 -. 4 ė Ø 800

740

640

560

480

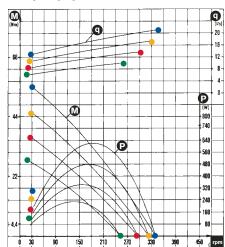
400

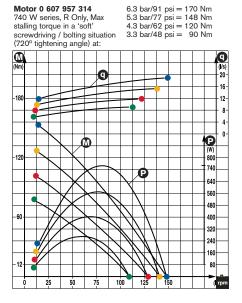
320

240

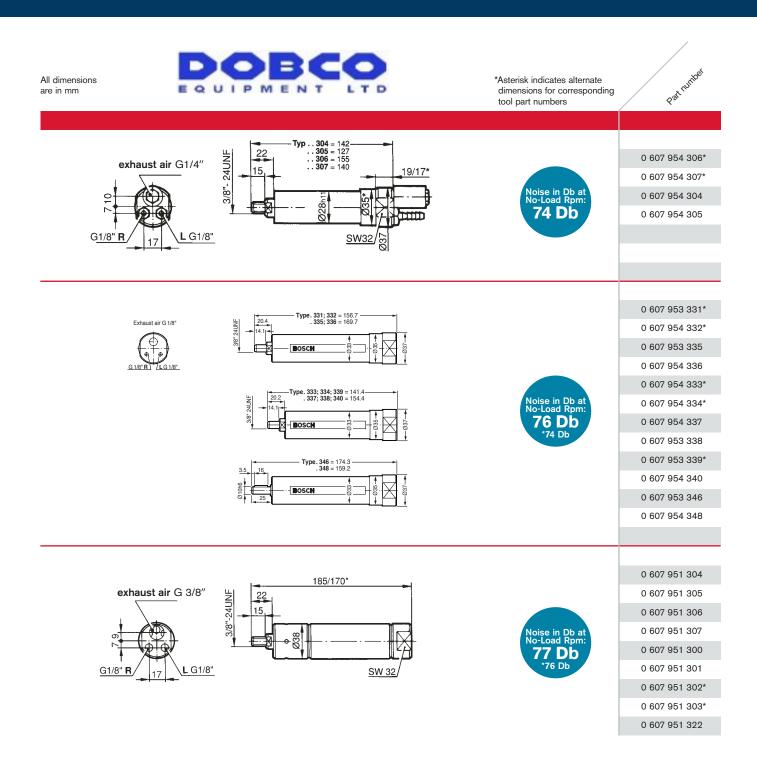
160

80


375 (rpm

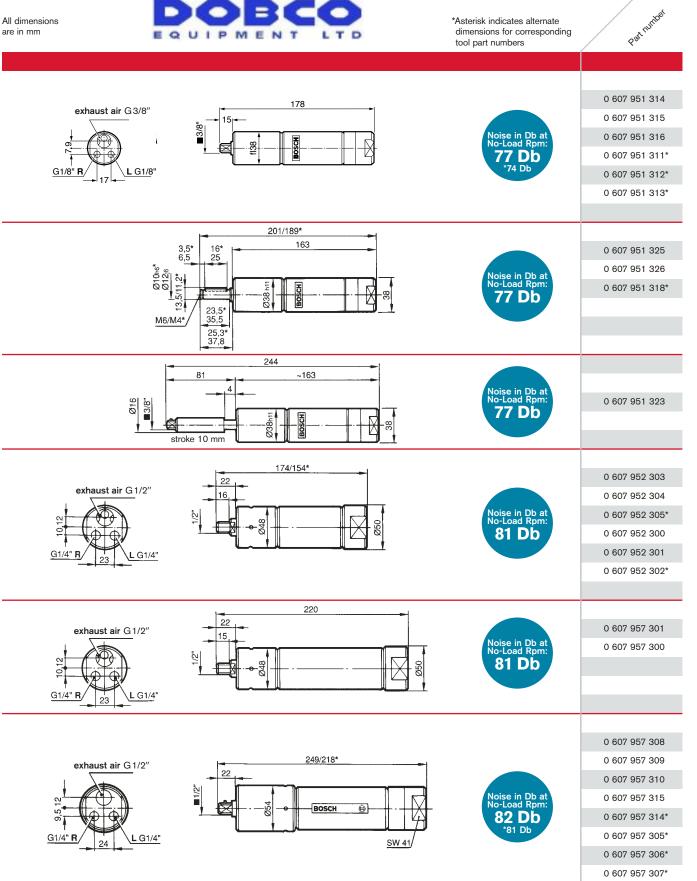

275

325


Motor 0 607 957 309 740 W series, R/L, Max stalling torque in a 'soft' screwdriving / bolting situation (720° tightening angle) at:

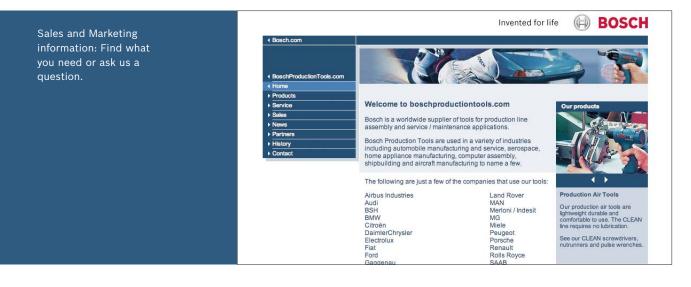
6.3 bar/91 psi = 65.0 Nm 5.3 bar/77 psi = 54.0 Nm 4.3 bar/62 psi = 43.5 Nm 3.3 bar/48 psi = 32.5 Nm

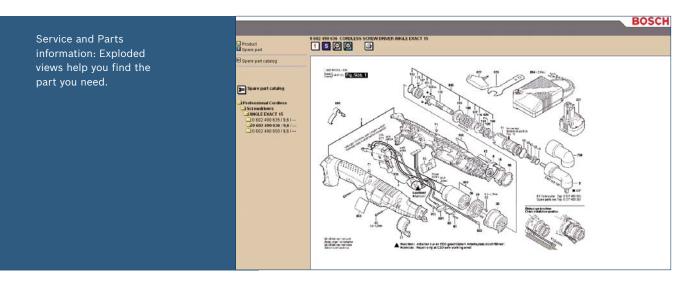
Dimensions for All Air Motors



All dimensions

are in mm


*Asterisk indicates alternate dimensions for corresponding tool part numbers



Ontario's Largest Pneumatic & Hydraulic Tool Distributor

1-2430 Lucknow Drive, Mississauga, Ontario L5S 1V3. Tel: 905-672-5557 Fax: 905-672-5559 Email: sales@dobcoegp.com www.dobcoeqp.com

Everything you need is on the Internet: **www.boschproductiontools.com** is the place to find new products, upcoming events, and product features & benefits. Customers can locate an authorized distributor near them or find links to other Bosch web sites. Dig a little deeper, and you'll find detailed parts illustrations and technical specifications for all Bosch Production Tools. Customers can locate an authorized service and sales distributor near them.

Specifications subject to change without notice. Bosch Production Tools, N.A. is a business unit of Robert Bosch Tool Corporation. Catalog number 3 609 996 411A (05.06)